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Exactly solvable models through the empty-interval method
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The most general one dimensional reaction-diffusion model with nearest-neighbor interactions that can be
solved exactly through empty-interval method has been introduced. Assuming translationally invariant initial
conditions, the probability that consecutive sites are emp#y, , has been exactly obtained. Here, however,
we do not consider reactions changing two empty neighboring sites. In the thermodynamic limit, the large-time
behavior of the system has also been investigated. Releasing translationally invariance, the evolution equation
for the probability thatn consecutive sites, starting from the skeare empty,E, ,, is obtained. In the
thermodynamic limit, the large time behavior of the system is also considered. Finally, the continuum limit of
the model is considered and the empty-interval probability function is obtained.
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I. INTRODUCTION three-site interactiong24]. EIM has been also generalized to
study the kinetics of thg-state one-dimensional Potts model
The principles of equilibrium statistical mechanics arein the zero-temperature limj@5]. _
well established. But, thermal equilibrium is a special case . In this paper, we are going to study all the one-dimen-
and little is known about the properties of systems not insmnal reaction-diffusion models with nearestjnelghbor inter-
equilibrium, for example, about the relaxation toward the@Ctions that can be exactly solved by EIM. It is worth noting
stationary state. There is no general approach to systems fijat Den-Avraham and ~coworkers have studied —one-
from equilibrium. As mean-field techniques, generally, do Imensional diffusion-limited processes through EJR0—

. ) 23]. In their study, some of the reaction rates have been
not give correct results for low-dimensional systems, peoDl.?aken infinite, and they have worked out the models on con-
are motivated to study exactly solvable stochastic models i, ,um. Some results for the discrete lattice have been ob-

low dimensions. Moreover, solving one-dimensional systeMg,inaq in[25]. For the cases of finite reaction rates, some
should, in principle, be easier. Different methods have beeq s, oximate solutions have been obtained.
used to study these models, including analytical and " e study models with finite reaction rates, obtain condi-
asymptotic methods, mean-field methods, and large-scale nypns for the system to be solvable via EIM, and then solve
merical methods. Exact results for some models on a onehe equations of EIM. We do this for a system on a lattice
dimensional lattice have been obtained, for example, irand on continuum.
[1-16]. The term exactly solvable has been used with differ- The scheme of the paper is as follows. In Sec. Il the most
ent meanings. general one-dimensional reaction-diffusion model with
In Ref.[17] a ten-parameter family of reaction-diffusion nearest-neighbor interactions that can be solved exactly
processes was introduced for which the evolution equation ghrough EIM has been introduced. Assuming translational
n-point functions contains only or less point functions. The invariance, the probability thatconsecutive sites are empty,
average particle number in each site has been obtained ekn, has been exactly obtained. Here, however, we do not
actly for these models. In Ref19] the same method has consider reactions changing two empty neighboring sites. In
been used to analyze the above mentioned ten-parametée thermodynamic limit, the large-time behavior of the sys-
family model on finite lattice with boundaries. As another tem has also been investigated. In Sec. Il the assumption of
approach, the term integrablility in RdfL8] means that the translational invariance has been released and the evolution
N-particle conditional probabilitiesS matrix is factorized ~€duation for the probability that consecutive sites, starting
into a product of two-particlés matrices, and for multispe- [TOM the sitek, are emptyE, , is obtained. In the thermo-
cies models, the two-particl® matrix satisfies the quantum dyna_mlc limit, _the large-time behavu_)r of the system IS also
Yang-Baxter equation. con_5|dered. It_ is shown that 'Franslanonal_ly asymmetric fluc-
The empty-interval metho(EIM) has been used to ana- tuations relative to thg stationary cqnflguratlo_n disappear
lyze the one-dimensional dynamics of diffusion-limited coa-faster than .the tran_sla_monally symmetric fluct.uatlons. In Sec.
lescencg 20—23. Using this method, the probability that IV the continuum I|m|t. 'of the modgl is cqn5|dered and the
consecutive sites are empty has been calculated. This meth6Pty-interval probability function is obtained.

has been used to study a reaction-diffusion process with .. MODELS SOLVABLE THROUGH THE
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neighbor interactions. We want to impose restrictions on th&hen, using

reaction and diffusion rates so that the system is solvable via . . .
EIM, that is, so that the evolution equation for the probabil- P(@@O---O)+P(OO0O---O)=P(@0---O)
ity that n consecutive sites are empiy, is closed. Suppose
that the initial condition of the system is translationally in- =k, ,— L,
variant. The most general interactions for a single-species @)
model in a one-dimensional lattice with nearest-neighbor in- o _ _
teractions are and another similar relation, one arrives at

0O (00, 0O, OO) 00—(00, 00, OO dEq (1)

- ) o8l A = (14 13)(En 1+ En 1 —2Ey)
@0 _.(00, OO, O®) 00— (60, 00, 0F), (AT (By=Bnyy), n>1 (8

Note that if there were reactions with the final con-
figuration OO then one encounters with terms like
g(OOQO- --0) or P(OOO®@O- - -O) at the right-hand
side of Eq.(5), which are not expressible in terms Bf’s.
On the other hand, DO is the initial configuration in a
reaction, the evolution equation f&t,'s is still closed, al-
though the analog of E{8) will be a linear finite difference
quation with nonconstant coefficients. We do not consider
his reaction here.
The equation of motion oE;(t) is

where an emptyoccupied site is denoted byD (®). The
constraint of solvability of the model through EIM, imposes
that, as we will show, there are no processes in which th
final configuration isOO. We shall also see that the pro-
cesses the initial configuration of them@O, have no ef-
fect on the solvability through EIM. But first, let us consider
only the systems for them there are no interactions with

as the initial or final configuration. So, among the above 1
interactions, only the following six interactions remain to be

considered:
dE,(t
0o, I, 00, 13 al )=(r2+r3)(1+E2—2E1)—(r1+r4)(E1—E2).
[ Jor= , — , dt
O., r2 ..1 I’4 (9)
00, r;5 It is seen that it takes a form similar to E@®), provided one
0 o e (2 defines

The parameters; are the rate of interactions. Define Eo(t):=1. (10

Then we have Eq8), for n=1, equipped with the boundary

P(OO---O)=E,, (3 condition (10). We also seE, ,1(t)=0, which means that
from which, one obtains initially at Ieagt one particle is present in the lattice. If ini-
n n tially all the sites were emptyE,(0)=1 for all n], then the

—_—  ——

P(@O0---0)=3DP(O0--O@)=E,~E, .., above-defined reactions would not change the configuration

of the system, and if initially at least one particle was
4 present, then at any timg, . ,(t)=0. So, the completely
empty lattice is a stationary state that is decoupled from any

where® (O) indicates an occupietempty site, andP de- other state. Defining

notes the probability of the configuration. The evolution

equation fork,(t) ins ) itar a
—— r;P(@@0---0)+7,P(O®0---O) ERRE
" " and rescaling the time properly, the equation of motion be-
—_— comes
+rgP(O--CO@)+r,P(O---O@O0)—(r;+r,)
. . dEq(1)
T:En—1+En+1_2En+b(En+1_En)v
XP(@OQO--O)=(r3+r )P(O---00C0@).
(5) 0<n<L+1 (12

The right-hand side of Eq(5) is not generally in terms of yith the boundary conditions
only E,’s. In order to make it expressible in terms Bf’s,
using Eq.(4), one has to impose Eo(t)=1, E_,.(t)=0. (13

r3=rs, [r,=rg. (6) A particular solution to this is the stationary solution
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EP ,+E. ,—2E"+b(EP, ,—EP)=0. (14)
Taking the ansatz
Ef=AZ+BZ, (15)
for EF, one arrives at
z+z '—2+b(z—-1)=0, (16)

the solutions of which are;=1/(1+b) andz,=1. Using
the boundary conditiongy,=1 andE, ,;=0, A andB are
obtained as

B 1
S 1-(1+p)
17
_ —(1+b)t?
S 1-(1+b) bl
Defining
Fo(t):=Eq(t)—Epy (18)

it is seen that the evolution equation fBy, is the same as
that of E,,, but the boundary conditions fét,, are homoge-
neous. The initial condition foF , is

Fn(0)=E,(0)—EF. (19)

To calculateF ,(t), one seeks the eigenvalues and eigenvec-

tors of the operator at the right-hand side of Efp), that is

ef=fn1+fo1—2f,+b[f 1 —fal. (20)
The solution to this is
f,=az{+b'z), (21
wherez;’'s satisfy
Z2(1+b)—z(e+2+b)+1=0. (22)
Now, defining
Z;:=2\/1+b, (23
it is seenZ;Z,=1. So
fn:m(azn+b’2‘”). (29
The boundary conditionsy(t)=F _,41(t)=0, lead to
Z= ex;{ﬂ , (25
L+1
wherek is an integer satisfying<k<L+1, and
foo - n,zsin( ”nk). (26)
N (14+Db) L+1
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The corresponding eigenvalue is then

€§=—2— b+2\/1+bc05< (27)

L+1

ThenF,(t) will be

skt, (28)

L
Fa(t :2

T
)n/2 L +1
where

L

A= 7171 E [

L+1 mn=1

m7Tk

_ m/2
E.(0)—EP ml(1+b)™esinl —— 11

(29
In the thermodynamic limitl{—o), F,(t) takes a sim-

pler form. Definingx:=wk/(L+1), Egs.(28) and (29) lead
to

2 & (7
Fot)=— >, J’ dxexq (—2—b+2y1+b cosx)t]
T m=1Jo

X sin(Nx)sin(Mmx) F ,(0) (1 + b)(M=m72

= 2 (1+b)(M=M2g=+d)[| (ot r+b)
m=1
~lmin(2tV1+b)[En(0)—EP], (30)

where in the second line we have used the integral represen-
tation of the modified Bessel functions

1 (=
()= ;L dxcognx)et ©sX, (31

To study the large-time behavior &f,(t), one takesy
=:7B/(L+1). In the thermodynamic limitl{—o), Eqg.
(28) leads to

F t—;fwd
0= ), X800

Xexg(—2—b+2y1+bcosx)t]sin(nx).
(32)
At large times, the main contribution to the integral comes

from the regiorx~0, in which the exponent of the exponen-
tial term takes its largest value. So,

Fo(t)~ ———exd(—2—b+2y1+b)t]

n
( )n/2
% J "dx e TRty p(y). 33)

0

or
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ex(—2—b+2y1+Db)t] makes the evolution equation valid foxh<<L+1. If the
Fa(t)~ n : (34) Ilattice is not initially empty, one also has

provided B(x) is well behaved and nonzero at0. If b B +2(O=0. (40

#0, there is an energy gap in the spectrum and the systefjsing the definitions
relaxes towards its stationary state exponentiallyb#0,

there is no energy gap and the relaxation towards the station- ry+ry
ary state is in the form of power law with the exponent =
—1. The dependence &f, on b shows that increasing the
value ofb leads to a sharper decreasd-qfwith respect tan. Pt

This can be seen from E@33). This is reasonable, since -1 2

Trotrg’

increasingb means increasing the creation rate or decreasing EANE

the annihilation rate. This prevents formation of large empty

intervals. di= s (41)
The empty-interval probability functions can be used to ro+rg’

obtain some kinds offi-point functions. It is easy to see that )
m Eq. (38) can be rearranged in the form

P(@OO---O@)=E,—2E, . +E, > (395 dE, (1)
n
So, the results foE,(t)'s can be used to obtain the probabil- dt kn-1T Eint17 2B n = B(Eyn—Eyns1)
ity that between two occupied sites, there arsites, which
are empty. The one-point function and the two-point function —C(Exn+17 Ex—1n+1) TA(Exs1n-1—Exn-1)-
(nijn;, 1) can also be obtained usirtg,’s. In fact, (n)=1 (42)

—E,, and(njn;.1)=E,—2E;+1.
Using the particular solutioE,'?, one defines
ll. MODELS SOLVABLE THROUGH THE
EMPTY-INTERVAL METHOD: Fin(t) :=Eyn(t) —Ef, (43

THE GENERAL CASE _ o _
. . _ . ~ which satisfies Eq(42), but with homogeneous boundary
In the preceding section, we considered translationally ingonditions,

variant initial conditions. As the dynamics is translationally

invariant, the probabilitye,,(t) will be the same for all sites, Fro(t)=Fk+1(t)=0. (44
provided the initial condition for it is so. In this section, we

release the translational invariance of the initial conditionsApplying the Fourier transformation

and the quantity of our interest is the probabiBy ,(t), that

n consecutive sites, starting from the ditare empty at time =~
; g i Folw,t):=3 ofFia(t), (45)
PL(OO-+-0O)=E,, (36)  one arrives at

It is easy to see that ~

y . dE (0t) - _ _

gt~ Fru(@)+Fo(e,) = 2F(e,)
P (@O0 --O)=E; 1 n—E i1,
A (37) _b[’ﬁn(wut)_ﬁn+l(wut)]_C[T:’nJrl(wut)
P](OO”‘O.):E],WI_E],WI+1‘ ~ ~
—wFp(o)]+dle '=F (o)
Using the interaction$2) and the above identities, one ar- _
rives at —Fno1(w,t)]. (46)
dEy (1) To solve this, one first solves the eigenvalue problem

T:rs(Ek+1,n—1_Ek,n)"‘rz(Ek,n—l_Ek,n) ~ ~ ~ T
efn(w)=f_1(0)+fhi1(w)—2f(w)

—(ri+r)(Exn—Ex—1n+1) - -
—b[f(w)—fh11(w)]

—(ra+rg)(Exn—Exn+1)- (38 _ _
—C[fi1(w)—of 1(w)]
Similar to the preceding section, imposing the boundary con- n+1~ nil
dition +dleo H,_1(0)—Th_1(w)]. (47
Evo(t)=1 (39  using the ansatz
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f,=azl+b'z}, (48)
and the boundary conditions, one arrives at
e — n/2 o
fon(@)=[B(w)]"sin
=—2-b+D s 4
es=—2—b+D(w)co 1) (49
where
D(w):=2\[1+d(w t=1)][1+b+c(w—1)],
5 1+d(o 1) o
(@)= T b o(e—1)" (50

andsis an integer between 1 and In the thermodynamic
limit L—o0, one arrives at

Fo(o,)=2 Fu(0,0

X[B(w)]"" ™2 Y] [D(w)t]
~Imen[D(@)t]}, (51)

where

ﬁﬁ&®=§cfﬁmﬂm—ﬂl (52)
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For the continuum limit, it is better to use a quantity with
arguments symmetric relative to the starting point and the
end point of the empty interval. For an empty interval of the
length n starting from the sitek, the end site ik’=k+n
—1. Then one can use
s:=k+k’'=2k+n—1 (56)
instead ofk for labeling the empty intervab/2 is the center
of the empty interval. So, one uses the quantity

gs,n(t) ’:Ek,n(t)-

The equation of motion fof~ (t) is then

(57)

d.7-—’ (t)
(Sj: :r2(‘7:sfl,nfl+]:sfl,n+l_2~7:s,n)+r3(~7:s+1,n71

+-7:s+1,n+1_2-7:s,n)
+ r4(fs+1,n+1_ fs,n) + rl(]:sfl,n+1_ fs,n)-
(58)
Here F is the solution to the evolution equation 6f but
with homogeneous boundary conditions. Uskg-s/2 and

x:=n, and Taylor expanding the above expression in the con-
tinuum limit, one arrives at

Now, let us consider the relaxation of the system towards

its stationary state. Suppose that the initial valueHQy, is

o) thatﬁn(w,O) contains a term proportional #(p) (where
w=¢"?), and another term that is a smooth function«af

The § term comes from a translationally invariant part in

Fnk(0). Using the steepest descent method, one can see that

the relaxation behavior of the second term is governed by the

extremum value of the eigenvalueswith respect to a com-
plex w. This is found to be

€ma= —2—b+2[Jdc+J(1—-d)(1+b-c)]. (53
It is easy to show
€ma=—2—b+2\1+b. (54)
Equality holds when
Fa(ry+rp)=ra(ra+ry). (59

This means that the relaxation time for the translationallyone arrives at

noninvariant part is smaller than of the translationally invari-
ant part. That is, the translationally noninvariant fluctuations

disappear faster than the translationally invariant parts.

IV. THE CONTINUUM LIMIT

In the preceding section, we considered the probability of

finding n consecutive empty sites starting from tkin site.

IF(X,X;t) (O )
—————=| Adx+Biy+— 5+ Ci5+ Daydx
at 4
X F(X,x;t), (59
where the parameteis B, C, andD are
ra—r
A==I’3—r2+ 42 l, B==r1+l‘4,
1 r,—rq
Ci=5[ritry+2(ratry)], D=——. (60)
Using the change of variables
Syt | Am 22— D 61
=XH AT 5t 5 ey
and
X, X;t)=": B e 2 X,X; 62
f( ,X,t)—.eX _EX_ Kt ]:( 1X!t)1 ( )
IFX.xt) cos(C D2\ ,]. % 63
T— dy+ Z—E 0">‘< F(X,x;t). (63
The boundary conditions foF are
F(X,x=0;t)=F(X,x—0;t)=0. (64)

056116-5



M. ALIMOHAMMADI, M. KHORRAMI, AND A. AGHAMOHAMMADI PHYSICAL REVIEW E 64056116
To obtain the solution fo€, one has to add a particular

The Green functiorG(X,X’,x,x’;t) for the equation(63)
solution with the boundary conditions

with the boundary condition&4) is

o 1 o Ex=0)=1, &(Xx—x)=0. (67)
G(X, X', x,X";t):=—————=¢exd —(X—X")/(4C't)][ ex . ) ) .
47tCC’ H P One can choose this particular solution to be translationally
invariant (X independent One is then led to
[~ (x=x")(4CD)} nvariant ¢ independent one |
2\ oP —
—exp{ — (x+x)/(4CH)}, (65 (Bt Ca)E () =0, (68)
whereC’ =(C/4)—D2/(4C) Finally, the solution to which is
B BZ gP: eXF( - BX/C) (69)
F(X,x;t)= ex;{ - ==X— —t)
2C 4C This particular solution is the same as that of Sec. Il in the

» © R continuum limit.
X J f dx'dX’
x' =0 '— _

X G()A(,)A(’ XX F(X X! ;O)e(B/ZC)x"
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