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Exactly solvable models through the empty-interval method
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The most general one dimensional reaction-diffusion model with nearest-neighbor interactions that can be
solved exactly through empty-interval method has been introduced. Assuming translationally invariant initial
conditions, the probability thatn consecutive sites are empty,En , has been exactly obtained. Here, however,
we do not consider reactions changing two empty neighboring sites. In the thermodynamic limit, the large-time
behavior of the system has also been investigated. Releasing translationally invariance, the evolution equation
for the probability thatn consecutive sites, starting from the sitek, are empty,Ek,n , is obtained. In the
thermodynamic limit, the large time behavior of the system is also considered. Finally, the continuum limit of
the model is considered and the empty-interval probability function is obtained.
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I. INTRODUCTION

The principles of equilibrium statistical mechanics a
well established. But, thermal equilibrium is a special ca
and little is known about the properties of systems not
equilibrium, for example, about the relaxation toward t
stationary state. There is no general approach to system
from equilibrium. As mean-field techniques, generally,
not give correct results for low-dimensional systems, peo
are motivated to study exactly solvable stochastic model
low dimensions. Moreover, solving one-dimensional syste
should, in principle, be easier. Different methods have b
used to study these models, including analytical a
asymptotic methods, mean-field methods, and large-scale
merical methods. Exact results for some models on a o
dimensional lattice have been obtained, for example,
@1–16#. The term exactly solvable has been used with diff
ent meanings.

In Ref. @17# a ten-parameter family of reaction-diffusio
processes was introduced for which the evolution equatio
n-point functions contains onlyn or less point functions. The
average particle number in each site has been obtained
actly for these models. In Ref.@19# the same method ha
been used to analyze the above mentioned ten-param
family model on finite lattice with boundaries. As anoth
approach, the term integrablility in Ref.@18# means that the
N-particle conditional probabilities’S matrix is factorized
into a product of two-particleS matrices, and for multispe
cies models, the two-particleS matrix satisfies the quantum
Yang-Baxter equation.

The empty-interval method~EIM! has been used to ana
lyze the one-dimensional dynamics of diffusion-limited co
lescence@20–23#. Using this method, the probability thatn
consecutive sites are empty has been calculated. This me
has been used to study a reaction-diffusion process
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three-site interactions@24#. EIM has been also generalized
study the kinetics of theq-state one-dimensional Potts mod
in the zero-temperature limit@25#.

In this paper, we are going to study all the one-dime
sional reaction-diffusion models with nearest-neighbor int
actions that can be exactly solved by EIM. It is worth noti
that ben-Avraham and coworkers have studied o
dimensional diffusion-limited processes through EIM@20–
23#. In their study, some of the reaction rates have be
taken infinite, and they have worked out the models on c
tinuum. Some results for the discrete lattice have been
tained in @25#. For the cases of finite reaction rates, som
approximate solutions have been obtained.

We study models with finite reaction rates, obtain con
tions for the system to be solvable via EIM, and then so
the equations of EIM. We do this for a system on a latt
and on continuum.

The scheme of the paper is as follows. In Sec. II the m
general one-dimensional reaction-diffusion model w
nearest-neighbor interactions that can be solved exa
through EIM has been introduced. Assuming translatio
invariance, the probability thatn consecutive sites are empty
En , has been exactly obtained. Here, however, we do
consider reactions changing two empty neighboring sites
the thermodynamic limit, the large-time behavior of the sy
tem has also been investigated. In Sec. III the assumptio
translational invariance has been released and the evolu
equation for the probability thatn consecutive sites, startin
from the sitek, are empty,Ek,n , is obtained. In the thermo
dynamic limit, the large-time behavior of the system is a
considered. It is shown that translationally asymmetric flu
tuations relative to the stationary configuration disapp
faster than the translationally symmetric fluctuations. In S
IV the continuum limit of the model is considered and t
empty-interval probability function is obtained.

II. MODELS SOLVABLE THROUGH THE
EMPTY-INTERVAL METHOD:

THE TRANSLATIONALLY INVARIANT CASE

Consider a general one-species reaction-diffusion mo
on a one-dimensional lattice withL11 sites, with nearest-
©2001 The American Physical Society16-1
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neighbor interactions. We want to impose restrictions on
reaction and diffusion rates so that the system is solvable
EIM, that is, so that the evolution equation for the probab
ity that n consecutive sites are emptyEn is closed. Suppose
that the initial condition of the system is translationally i
variant. The most general interactions for a single-spe
model in a one-dimensional lattice with nearest-neighbor
teractions are

ds→~dd, sd, ss ! sd→~ds, dd, ss !
~1!

dd→~ds, ss, sd ! ss→~ds, dd, sd !,

where an empty~occupied! site is denoted bys (d). The
constraint of solvability of the model through EIM, impos
that, as we will show, there are no processes in which
final configuration isss. We shall also see that the pro
cesses the initial configuration of them isss, have no ef-
fect on the solvability through EIM. But first, let us consid
only the systems for them there are no interactions withss
as the initial or final configuration. So, among the above
interactions, only the following six interactions remain to
considered:

ds→H dd, r 1

sd, r 2
, sd→H ds, r 3

dd, r 4
,

dd→H ds, r 5

sd, r 6
. ~2!

The parametersr i are the rate of interactions. Define

~3!

from which, one obtains

~4!

whered (s) indicates an occupied~empty! site, andP de-
notes the probability of the configuration. The evoluti
equation forEn(t) is

~5!

The right-hand side of Eq.~5! is not generally in terms o
only En’s. In order to make it expressible in terms ofEn’s,
using Eq.~4!, one has to impose

r 35r 5 , r 25r 6 . ~6!
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Then, using

~7!

and another similar relation, one arrives at

dEn~ t !

dt
5~r 21r 3!~En211En1122En!

2~r 11r 4!~En2En11!, n.1. ~8!

Note that if there were reactions with the final co
figuration ss then one encounters with terms lik
P(ssds•••s) or P(ssdds•••s) at the right-hand
side of Eq.~5!, which are not expressible in terms ofEk’s.
On the other hand, ifss is the initial configuration in a
reaction, the evolution equation forEn’s is still closed, al-
though the analog of Eq.~8! will be a linear finite difference
equation with nonconstant coefficients. We do not consi
this reaction here.

The equation of motion ofE1(t) is

dE1~ t !

dt
5~r 21r 3!~11E222E1!2~r 11r 4!~E12E2!.

~9!

It is seen that it takes a form similar to Eq.~8!, provided one
defines

E0~ t !ª1. ~10!

Then we have Eq.~8!, for n>1, equipped with the boundar
condition ~10!. We also setEL11(t)50, which means that
initially at least one particle is present in the lattice. If in
tially all the sites were empty@En(0)51 for all n], then the
above-defined reactions would not change the configura
of the system, and if initially at least one particle w
present, then at any timeEL11(t)50. So, the completely
empty lattice is a stationary state that is decoupled from
other state. Defining

bª
r 11r 4

r 21r 3
~11!

and rescaling the time properly, the equation of motion
comes

dEn~ t !

dt
5En211En1122En1b~En112En!,

0,n,L11 ~12!

with the boundary conditions

E0~ t !51, EL11~ t !50. ~13!

A particular solution to this is the stationary solution
6-2
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En21
P 1En11

P 22En
P1b~En11

P 2En
P!50. ~14!

Taking the ansatz

En
P5Az1

n1Bz2
n , ~15!

for En
P, one arrives at

zi1zi
21221b~zi21!50, ~16!

the solutions of which arez151/(11b) and z251. Using
the boundary conditionsE051 andEL1150, A and B are
obtained as

A5
1

12~11b!2L21
,

~17!

B5
2~11b!2L21

12~11b!2L21
.

Defining

Fn~ t !ªEn~ t !2En
P, ~18!

it is seen that the evolution equation forFn is the same as
that of En , but the boundary conditions forFn are homoge-
neous. The initial condition forFn is

Fn~0!5En~0!2En
P. ~19!

To calculateFn(t), one seeks the eigenvalues and eigenv
tors of the operator at the right-hand side of Eq.~12!, that is

e f n5 f n111 f n2122 f n1b@ f n112 f n#. ~20!

The solution to this is

f n5az1
n1b8z2

n , ~21!

wherezi ’s satisfy

zi
2~11b!2zi~e121b!1150. ~22!

Now, defining

ZiªziA11b, ~23!

it is seenZ1Z251. So

f n5
1

~11b!n/2
~aZn1b8Z2n!. ~24!

The boundary conditionsF0(t)5FL11(t)50, lead to

Z5 expS ipk

L11D , ~25!

wherek is an integer satisfying 1,k,L11, and

f k,n5
1

~11b!n/2 sinS pnk

L11D . ~26!
05611
c-

The corresponding eigenvalue is then

ek5222b12A11b cosS pk

L11D . ~27!

ThenFn(t) will be

Fn~ t !5 (
k51

L
ak

~11b!n/2
sinS pnk

L11Deekt, ~28!

where

ak5
2

L11 (
m51

L

@Em~0!2Em
P #~11b!m/2 sinS mpk

L11D .

~29!

In the thermodynamic limit (L→`), Fn(t) takes a sim-
pler form. Definingxªpk/(L11), Eqs.~28! and ~29! lead
to

Fn~ t !5
2

p (
m51

` E
0

p

dx exp@~222b12A11b cosx!t#

3sin~nx!sin~mx!Fm~0!~11b!(m2n)/2

5 (
m51

`

~11b!(m2n)/2e2(21b)t@ Im2n~2tA11b!

2Im1n~2tA11b!#@Em~0!2Em
P #, ~30!

where in the second line we have used the integral repre
tation of the modified Bessel functions

In~ t !5
1

pE0

p

dx cos~nx!et cosx. ~31!

To study the large-time behavior ofFn(t), one takesak
5:pBk /(L11). In the thermodynamic limit (L→`), Eq.
~28! leads to

Fn~ t !5
1

~11b!n/2E0

p

dxB~x!

3exp@~222b12A11b cosx!t#sin~nx!.

~32!

At large times, the main contribution to the integral com
from the regionx'0, in which the exponent of the exponen
tial term takes its largest value. So,

Fn~ t !'
n

~11b!n/2
exp@~222b12A11b!t#

3E
0

p

dx e2A11bx2txB~x!, ~33!

or
6-3
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Fn~ t !;
exp@~222b12A11b!t#

t
, ~34!

provided B(x) is well behaved and nonzero atx50. If b
Þ0, there is an energy gap in the spectrum and the sys
relaxes towards its stationary state exponentially. Ifb50,
there is no energy gap and the relaxation towards the sta
ary state is in the form of power law with the exponen
21. The dependence ofFn on b shows that increasing th
value ofb leads to a sharper decrease ofFn with respect ton.
This can be seen from Eq.~33!. This is reasonable, sinc
increasingb means increasing the creation rate or decreas
the annihilation rate. This prevents formation of large em
intervals.

The empty-interval probability functions can be used
obtain some kinds ofn-point functions. It is easy to see tha

~35!

So, the results forEn(t)’s can be used to obtain the probab
ity that between two occupied sites, there aren sites, which
are empty. The one-point function and the two-point funct
^nini 11& can also be obtained usingEn’s. In fact, ^n&51
2E1, and^nini 11&5E222E111.

III. MODELS SOLVABLE THROUGH THE
EMPTY-INTERVAL METHOD:

THE GENERAL CASE

In the preceding section, we considered translationally
variant initial conditions. As the dynamics is translationa
invariant, the probabilityEn(t) will be the same for all sites
provided the initial condition for it is so. In this section, w
release the translational invariance of the initial conditio
and the quantity of our interest is the probabilityEk,n(t), that
n consecutive sites, starting from the sitek are empty at time
t,

~36!

It is easy to see that

~37!

Using the interactions~2! and the above identities, one a
rives at

dEk,n~ t !

dt
5r 3~Ek11,n212Ek,n!1r 2~Ek,n212Ek,n!

2~r 11r 2!~Ek,n2Ek21,n11!

2~r 31r 4!~Ek,n2Ek,n11!. ~38!

Similar to the preceding section, imposing the boundary c
dition

Ek,0~ t !51 ~39!
05611
m

n-

g
y

n

-

s

-

makes the evolution equation valid for 0,n,L11. If the
lattice is not initially empty, one also has

Ek,L11~ t !50. ~40!

Using the definitions

bª
r 11r 4

r 21r 3
,

cª
r 11r 2

r 21r 3
,

dª
r 3

r 21r 3
, ~41!

Eq. ~38! can be rearranged in the form

dEk,n~ t !

dt
5Ek,n211Ek,n1122Ek,n2b~Ek,n2Ek,n11!

2c~Ek,n112Ek21,n11!1d~Ek11,n212Ek,n21!.

~42!

Using the particular solutionEn
P , one defines

Fk,n~ t !ªEk,n~ t !2En
P , ~43!

which satisfies Eq.~42!, but with homogeneous boundar
conditions,

Fk,0~ t !5Fk,L11~ t !50. ~44!

Applying the Fourier transformation

F̃n~v,t !ª(
k

vkFk,n~ t !, ~45!

one arrives at

dF̃n~v,t !

dt
5F̃n21~v,t !1F̃n11~v,t !22F̃n~v,t !

2b@ F̃n~v,t !2F̃n11~v,t !#2c@ F̃n11~v,t !

2vF̃n11~v,t !#1d@v215F̃n21~v,t !

2F̃n21~v,t !#. ~46!

To solve this, one first solves the eigenvalue problem

e f̃ n~v!5 f̃ n21~v!1 f̃ n11~v!22 f̃ n~v!

2b@ f̃ n~v!2 f̃ n11~v!#

2c@ f̃ n11~v!2v f̃ n11~v!#

1d@v21 f̃ n21~v!2 f̃ n21~v!#. ~47!

using the ansatz
6-4
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f̃ n5az1
n1b8z2

n , ~48!

and the boundary conditions, one arrives at

f̃ s,n~v!5@B~v!#n/2 sinS nps

L11D
es5222b1D~v!cosS ps

L11D , ~49!

where

D~v!ª2A@11d~v2121!#@11b1c~v21!#,

B~v!ª
11d~v2121!

11b1c~v21!
, ~50!

ands is an integer between 1 andL. In the thermodynamic
limit L→`, one arrives at

F̃n~v,t !5(
m

F̃m~v,0!

3@B~v!# (n2m)/2e2(21b)t$Im2n@D~v!t#

2Im1n@D~v!t#%, ~51!

where

F̃m~v,0!5(
k

vk@Ek,m~0!2Em
P#. ~52!

Now, let us consider the relaxation of the system towa
its stationary state. Suppose that the initial value forEk,n is
so thatF̃n(v,0) contains a term proportional tod(p) ~where
v5eip), and another term that is a smooth function ofv.
The d term comes from a translationally invariant part
Fn,k(0). Using the steepest descent method, one can see
the relaxation behavior of the second term is governed by
extremum value of the eigenvaluese with respect to a com-
plex v. This is found to be

emax5222b12@Adc1A~12d!~11b2c!#. ~53!

It is easy to show

emax<222b12A11b. ~54!

Equality holds when

r 2~r 11r 2!5r 3~r 31r 4!. ~55!

This means that the relaxation time for the translationa
noninvariant part is smaller than of the translationally inva
ant part. That is, the translationally noninvariant fluctuatio
disappear faster than the translationally invariant parts.

IV. THE CONTINUUM LIMIT

In the preceding section, we considered the probability
finding n consecutive empty sites starting from thekth site.
05611
s
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For the continuum limit, it is better to use a quantity wi
arguments symmetric relative to the starting point and
end point of the empty interval. For an empty interval of t
length n starting from the sitek, the end site isk85k1n
21. Then one can use

sªk1k852k1n21 ~56!

instead ofk for labeling the empty interval.s/2 is the center
of the empty interval. So, one uses the quantity

Es,n~ t !ªEk,n~ t !. ~57!

The equation of motion forFs,n(t) is then

dFs,n~ t !

dt
5r 2~Fs21,n211Fs21,n1122Fs,n!1r 3~Fs11,n21

1Fs11,n1122Fs,n!

1r 4~Fs11,n112Fs,n!1r 1~Fs21,n112Fs,n!.

~58!

Here F is the solution to the evolution equation ofE, but
with homogeneous boundary conditions. UsingXªs/2 and
xªn, and Taylor expanding the above expression in the c
tinuum limit, one arrives at

]F~X,x;t !

]t
5S A]X1B]x1

C

4
]X

21C]x
21D]x]XD

3F~X,x;t !, ~59!

where the parametersA, B, C, andD are

Aªr 32r 21
r 42r 1

2
, Bªr 11r 4,

Cª

1

2
@r 11r 412~r 21r 3!#, Dª

r 42r 1

2
. ~60!

Using the change of variables

X̂ªX1S A2
BD

2C D t2
D

2C
x ~61!

and

F~X,x;t !5:expF2
B

2C
x2

B2

4C
t GF̂~X̂,x;t !, ~62!

one arrives at

]F̂~X̂,x;t !

]t
5FC]x

21S C

4
2

D2

4CD ] X̂
2 GF̂~X̂,x;t !. ~63!

The boundary conditions forF̂ are

F̂~X̂,x50;t !5F̂~X̂,x→`;t !50. ~64!
6-5
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The Green functionG(X̂,X̂8,x,x8;t) for the equation~63!
with the boundary conditions~64! is

G~X̂,X̂8,x,x8;t !ª
1

4ptACC8
exp@2~X̂2X̂8!/~4C8t !#@exp

$2~x2x8!/~4Ct!%

2exp$2~x1x8!/~4Ct!%#, ~65!

whereC8ª(C/4)2D2/(4C). Finally,

F~X,x;t !5 expS 2
B

2C
x2

B2

4C
t D

3E
x850

` E
X̂852`

`

dx8dX̂8

3G~X̂,X̂8,x,x8;t !F~X8,x8;0!e(B/2C)x8.

~66!
a
,

n.

n,

ys

.

t.

05611
To obtain the solution forE, one has to add a particula
solution with the boundary conditions

E~x50!51, E~x→`!50. ~67!

One can choose this particular solution to be translation
invariant (X independent!. One is then led to

~B]x1C]x
2!E P~x!50, ~68!

the solution to which is

E P5 exp~2Bx/C!. ~69!

This particular solution is the same as that of Sec. II in
continuum limit.
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